84 research outputs found

    Attacking and Defending Emerging Computer Systems Using The Memory Remanence Effect

    Full text link
    In computer systems, manufacturing variances and hardware effects are typically abstracted away by the software layer. This dissertation explores how these effects, specifically memory remanence, can be used both as an attack vector and a tool to defend emerging computing systems. To achieve this, we show how time-keeping, anonymity, and authenticity can be affected by memory remanence. In terms of attacks, we explore the deanonymizing effect of approximate computing in the context of approximate memory in Probable Cause. We show how data passing through an approximate memory is watermarked with a device specific tag that points the attacker back to the device. In terms of defenses, we first present TARDIS: an approach to provide a notion of time for transiently powered embedded devices without requiring any hardware modification using remanence effect of SRAM. TARDIS allows these devices to keep a coarse-grained notion of time without the need for a running clock. Second, we propose data retention voltage of memory cells as a new type of physical unclonable function that allows for low-cost authentication and counterfeit resistance in computer systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136985/1/rahmati_1.pd

    Industrial Air Pollution Control

    Get PDF
    Ambient air contaminants have different adverse effects on human health, environment, and structures. Some pollutions are more toxic and have unfavorable effects on workers’ and public health, for example, cyanide/isocyanide vapor produced in some processes or in burning of polyurethane compounds, which is a toxic gas that can kill or cause harms impossible to reverse. It is so necessary that air pollutants will be controlled and treatment will be provided for the workers and public who are exposed or exhausted to the environment. Industrial ventilation (general ventilation, dilution ventilation, and local exhaust ventilation) is an appropriate system to control indoor air pollutions. Local exhaust ventilation (LEV) has different segments such as hoods, fittings, collectors (air cleaners), stacks, and fans that could collect and treat indoor and outdoor air contaminants. Each well-designed segment of a local exhaust ventilation is a vital subject that can cause an appropriate or inappropriate performance of systems. A well-designed LEV can lead to obtain a high efficiency level of pollution removal and minimum exposure (workers, public, and environment) to pollutants and save costs and energy
    • …
    corecore